# Past Seminars

We combine linear algebra techniques with finite element techniques to obtain a reliable stopping criterion for the Conjugate Gradient algorithm. The finite element method approximates the weak form of an elliptic partial differential equation defined within a Hilbert space by a linear system of equations A x = b, where A is a real N by N symmetric and positive definite matrix. The conjugate gradient method is a very effective iterative algorithm for solving such systems. Nevertheless, our experiments provide very good evidence that the usual stopping criterion based on the Euclidean norm of the residual b - Ax can be totally unsatisfactory and frequently misleading. Owing to the close relationship between the conjugate gradient behaviour and the variational properties of finite element methods, we shall first summarize the principal properties of the latter. Then, we will use the recent results of [1,2,3,4]. In particular, using the conjugate gradient, we will compute the information which is necessary to evaluate the energy norm of the difference between the solution of the continuous problem, and the approximate solution obtained when we stop the iterations by our criterion.

Finally, we will present the numerical experiments we performed on a selected ill-conditioned problem.

References

- [1] M. Arioli, E. Noulard, and A. Russo, Vector Stopping Criteria for Iterative Methods: Applications to PDE's, IAN Tech. Rep. N.967, 1995.
- [2] G.H. Golub and G. Meurant, Matrices, moments and quadrature II; how to compute the norm of the error in iterative methods, BIT., 37 (1997), pp.687-705.
- [3] G.H. Golub and Z. Strakos, Estimates in quadratic formulas, Numerical Algorithms, 8, (1994), pp.~241--268.
- [4] G. Meurant, The computation of bounds for the norm of the error in the conjugate gradient algorithm, Numerical Algorithms, 16, (1997), pp.~77--87.